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Consider a decision maker who is responsible to dynamically col-
lect observations so as to enhance his information about an underly-
ing phenomena of interest in a speedy manner while accounting for
the penalty of wrong declaration. Due to the sequential nature of the
problem, the decision maker relies on his current information state
to adaptively select the most “informative” sensing action among the
available ones.

In this paper, using results in dynamic programming, lower bounds
for the optimal total cost are established. The lower bounds charac-
terize the fundamental limits on the maximum achievable information
acquisition rate and the optimal reliability. Moreover, upper bounds
are obtained via an analysis of two heuristic policies for dynamic se-
lection of actions. It is shown that the first proposed heuristic achieves
asymptotic optimality, where the notion of asymptotic optimality,
due to Chernoff, implies that the relative difference between the to-
tal cost achieved by the proposed policy and the optimal total cost
approaches zero as the penalty of wrong declaration (hence the num-
ber of collected samples) increases. The second heuristic is shown to
achieve asymptotic optimality only in a limited setting such as the
problem of a noisy dynamic search. However, by considering the de-
pendency on the number of hypotheses, under a technical condition,
this second heuristic is shown to achieve a nonzero information acqui-
sition rate, establishing a lower bound for the maximum achievable
rate and error exponent. In the case of a noisy dynamic search with
size-independent noise, the obtained nonzero rate and error exponent
are shown to be maximum.
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1. Introduction. This paper considers a generalization of the classical
sequential hypothesis testing problem due to Wald [58]. Suppose there are
M hypotheses among which only one is true. A Bayesian decision maker
is responsible to enhance his information about the correct hypothesis in
a speedy and sequential manner while accounting for the penalty of wrong
declaration. In contrast to the classical sequential M -ary hypothesis testing
problem [2, 22, 39], our decision maker can choose one of K available actions
and, hence, exert some control over the collected samples’ “information con-
tent.” We refer to this generalization, originally tackled by Chernoff [17], as
the active sequential hypothesis testing problem.

The active sequential hypothesis testing problem naturally arises in a
broad spectrum of applications such as medical diagnosis [6], cognition [54],
sensor management [27], underwater inspection [28], generalized search [48],
group testing [16] and channel coding with perfect feedback [12]. It is intu-
itive that at any time instant, an optimized Bayesian decision maker relies
on his current belief to adaptively select the most “informative” sensing ac-
tion, that is, an action that provides the highest amount of “information.”
Making this intuition precise is the topic of our study.

The most well-known instance of our problem is the case of binary hypoth-
esis testing with passive sensing (M = 2, K = 1), first studied by Wald [58].
In this instance of the problem, the optimal action at any given time is
provided by a sequential probability ratio test (SPRT). There are numer-
ous studies on the generalizations to M > 2 (K = 1) and the performance
of known simple and practical heuristic tests such as MSPRT [2, 22, 39].
The generalization to the active testing case was considered by Chernoff
in [17] where a heuristic randomized policy was proposed and whose asymp-
totic performance was analyzed. More specifically, under a certain technical
assumption on uniformly distinguishable hypotheses, the proposed heuristic
policy is shown to achieve asymptotic optimality where the notion of asymp-
totic optimality [17] denotes the relative tightness of the performance upper
bound associated with the proposed policy and the lower bound associated
with the optimal policy.

The problem of active hypothesis testing also generalizes another classic
problem in the literature: the comparison of experiments first introduced
by Blackwell [9]. This is a single-shot version of the active hypothesis test-
ing problem in which the decision maker can choose one of several (usu-
ally two) actions/experiments to collect a single observation sample before
making the final decision. There have been extensive studies [9, 21, 24, 35–
37, 57] on comparing the actions. Applying various results from [9, 21] in our
context of active hypothesis testing and utilizing a dynamic programming
interpretation, a notion of optimal information utility, that is, an optimal
measure to quantify the information gained by different sensing actions,
can be derived [43]. Inspired by this view of the problem, which coincides
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with that promoted by DeGroot [20], we provide a set of (uniform) lower
bounds for the optimal information utility. Furthermore, we provide two
heuristic policies whose performance is investigated via nonasymptotic and
asymptotic analysis. The first policy is shown to be asymptotically optimal,
matching the performance of the scheme proposed in [17] (and follow-up
works [8, 11]), and provides a benchmark for comparison when considering
Chernoff’s asymptotic regime. In contrast, our second proposed policy is
only shown to be asymptotically optimal in a limited setup, including that
of noisy dynamic search. However, this policy has a provable advantage for
large M over those proposed in the literature. More specifically, this policy
can provide, under a technical condition, reliability and speedy declaration
simultaneously. In information theoretic terms, this policy can be shown
to achieve nonzero information acquisition rate and, hence, to generalize
Burnashev’s [12] variable-length channel coding scheme. We elaborate on a
complete literature survey in Section 2.2.

The remainder of this paper is organized as follows. In Section 2 we formu-
late the active sequential hypothesis testing problem and discuss the related
works. Section 3 provides a dynamic programming formulation and charac-
terizes a notion of optimal information utility. In Section 4 we provide three
lower bounds and two upper bounds on the optimal information utility. The
bounds are nonasymptotic and complementary for various values of the pa-
rameters of the problem. Section 5 states the asymptotic consequence of the
bounds obtained in Section 4. In particular, the obtained bounds are used
to establish notions of order and asymptotic optimality for the proposed
policies (generalizing that of [17]); and characterize lower and upper bounds
on the maximum achievable information acquisition rate and the optimal re-
liability. In Section 6 we investigate an important special case of the active
hypothesis testing, namely, the noisy dynamic search. In Section 7 we dis-
cuss the technical assumptions made in our work and contrast them with the
(weaker) assumptions in the literature. More specifically, we show that our
first technical assumption weakens significantly one of the assumptions made
in [17]. On the other hand, our second technical assumption is significantly
stronger than the corresponding assumptions in the literature. However, we
show that while this assumption is critical in obtaining the nonasymptotic
lower and upper bounds of Section 4, it has no bearing on our asymptotic
results in Section 5. Finally, we conclude the paper and discuss future work
in Section 8. In the interest of brevity, we have chosen to focus our analysis,
provided in the Appendix, on Theorems 1–3, whose results, to the best of
our knowledge, are entirely new and whose proofs require a substantially
different approach than those commonly available in the literature. In con-
trast, the proofs of Propositions 1–4 as well as Corollaries 1, 3, 5–7 follow
similar lines of argument to the proofs in the literature or in those obtained
in the Appendix and are included in the form of a supplemental article [44].
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Notation: Let [x]+ = max{x,0}. The indicator function 1{A} takes the
value 1 whenever event A occurs, and 0 otherwise. For any set S , |S| denotes
the cardinality of S . All logarithms are in base 2. The entropy function on
a vector ρ = [ρ1, ρ2, . . . , ρM ] ∈ [0,1]M is defined as H(ρ) =

∑M
i=1 ρi log

1
ρi
,

with the convention that 0 log 1
0 = 0. Finally, the Kullback–Leibler (KL)

divergence between two probability density functions q(·) and q′(·) on space

Z is defined as D(q‖q′) =
∫

Z q(z) log
q(z)
q′(z) dz, with the convention 0 log a

0 = 0

and b log b
0 =∞ for a, b ∈ [0,1] with b 6= 0.

2. Problem setup and summary of the results. In Section 2.1 we for-
mulate the problem of active sequential hypothesis testing, referred to as
Problem (P) hereafter. Section 2.2 states the main contributions of the pa-
per and provides a summary of related works.

2.1. Problem formulation. Here, we provide a precise formulation of our
problem.

Problem (P) (Active sequential hypothesis testing). Let ΩM = {1,2,
. . . ,M}. Let Hi, i ∈ ΩM , denote M hypotheses of interest among which
only one holds true. Let θ be the random variable that takes the value
θ = i on the event that Hi is true for i ∈ ΩM . We consider a Bayesian
scenario with prior ρ(0) = [ρ1(0), ρ2(0), . . . , ρM(0)], that is, initially P (θ =
i) = ρi(0) > 0 for all i ∈ ΩM . AM is the set of all sensing actions which
may depend on M and is assumed to be finite with |AM |<∞. Let P(AM )
denote the collection of all probability distributions on elements of AM , that
is, P(AM ) = {λ ∈ [0,1]|AM | :

∑

a∈AM
λa = 1}. Z is the observation space. For

all a ∈ AM , the observation kernel qai (·) (on Z) is the probability density
function for observation Z when action a is taken and Hi is true. We assume
that observation kernels {qai (·)}i∈ΩM ,a∈AM

are known and the observations
are conditionally independent over time. Let L denote the penalty (loss) for
a wrong declaration, that is, the penalty of selecting Hj , j 6= i, when Hi is
true.2 Let τ be the stopping time at which the decision maker retires. The
objective is to find a sequence of sensing actions A(0), A(1), . . . ,A(τ − 1),3

a stopping time τ and a declaration rule d :Aτ
M ×Zτ →ΩM that collectively

minimize the expected total cost

E[τ ] +LPe,(1)

2In general, we can define a loss matrix [Lij ]i,j∈ΩM
, where Lij denotes the penalty

(loss) of selecting Hj when Hi is true.
3We assume that A(t) is selected as a (possibly randomized) function of At−1

0 :=
[A(0),A(1), . . . ,A(t − 1)] and Zt−1

0 := [Z(0),Z(1), . . . ,Z(t − 1)], that is, sensing actions
and observations up to time t.
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where Pe = P (d(Aτ−1
0 ,Zτ−1

0 ) 6= θ) denotes the probability of making a wrong
declaration, and the expectation is taken with respect to the initial prior
distribution ρ(0) on θ as well as the distributions of action sequence, obser-
vation sequence and the stopping time.

2.2. Overview of the results and summary of the related works. The first
attempt to solve Problem (P) goes back to Chernoff’s work on active binary
composite hypothesis testing [17]. Chernoff proposed the following scheme to
select actions: at each time t, find the most likely true hypothesis, and then
select an action that can discriminate this hypothesis the best from each and
every element in the set corresponding to the alternative hypothesis. Much
of the subsequent literature extended this approach [1, 8, 11, 31, 32, 34, 47].
Chernoff showed that as L goes to infinity, the relative difference between
the expected total cost achieved by his proposed scheme and the optimal
expected total cost approaches zero, which he termed as asymptotic optimal-
ity.4 One of the main drawbacks of Chernoff’s asymptotic optimality notion
was his neglecting the complementary role of asymptotic analysis in M . In
particular, the notion of asymptotic optimality in L falls short in showing
the tension between using an (asymptotically) large number of samples to
discriminate among a few hypotheses with (asymptotically) high accuracy
or an (asymptotically) large number of hypotheses with a lower degree of
accuracy. As a result, although the scheme proposed in [17] and its subse-
quent extensions [1, 8, 11, 31, 32, 34, 47] are asymptotically optimal in L,
their provable information acquisition rate is restricted to zero. Intuitively,
the rate of information acquisition under any given heuristic relates to the
ratio between logM and the expected number of samples: the larger this
ratio, the faster information is acquired.

As elaborated in Section 5.3, to obtain asymptotic characterization of
the optimal expected total cost in a nonzero rate regime, it is important to
propose schemes which scale optimally with M as well. In his seminal pa-
per [12], Burnashev tackled the primal (constrained) version of Problem (P)
in the context of channel coding with feedback, and provided lower and up-
per bounds on the expected number of samples (or, equivalently, channel
uses) required to convey one of M uniformly distributed messages over a
discrete memoryless channel (DMC) with a desired probability of error. The
lower bound identified the dominating terms in both number of messages and

4In [17], the objective was to minimize cE[τ ] + Pe and the proposed policy was shown
to be asymptotically optimal as c → 0. It is straightforward to show that for L = 1

c
,

this problem coincides with Problem (P) defined in this paper. However, we have chosen
E[τ ] + LPe as an objective function for Problem (P) because of its interpretation as the
Lagrangian relaxation of an information acquisition problem in which the objective is to
minimize E[τ ] subject to Pe≤ ε, where ε > 0 denotes the desired probability of error.
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error probability, hence characterized the optimal reliability function (also
known as the error exponent) in addition to the feedback capacity (which
was known to coincide with the Shannon capacity [53]). In this paper, we
generalize5 this lower bound to the problem of active sequential hypothesis
testing, that is, Problem (P):

• We derive three lower bounds on the expected total cost (1). The bounds
hold for all prior beliefs and are nonasymptotic and complementary for
various values of L and M . In Section 5 these bounds are collectively used
to generalize the (information theoretic) notions of achievable communi-
cation rate [18] and error exponent [23] to the context of active sequential
hypothesis testing.

• The first and second lower bounds identify the dominating terms in L
and hence are useful in establishing asymptotic optimality of order-1 (due
to Chernoff [17]) and order-2 in L. Furthermore, from an information
theoretic viewpoint, these bounds are used to characterize an upper bound
on the reliability function (error exponent) at zero rate.

• The third lower bound characterizes the dominating terms of growth in the
optimal expected total cost in terms of L and M simultaneously. We use
this as a converse (in a fashion somewhat similar to Shannon’s channel
coding converse [18]) to derive an upper bound Imax on the maximum
achievable information acquisition rate. Additionally, this lower bound
allows us to provide an upper bound on the reliability function (error
exponent) for all rates R ∈ [0, Imax], and establish order optimality in M
as a necessary condition for any policy which achieves nonzero information
acquisition rate.

In addition to a lower bound on an expected number of samples, Bur-
nashev proposed a coding scheme with two phases of operation whose per-
formance provides a tight upper bound (in both number of messages and
error probability). It is interesting to note that the scheme of Chernoff, if
specialized to channel coding with feedback, coincides with the second phase
of Burnashev’s scheme and is of a repetition code nature. This means that
while the first phase of Burnashev’s scheme can achieve any information
rate up to the capacity of the channel, Chernoff’s one-phase scheme has a
rate of information acquisition equal to zero. Inspired by Burnashev’s cod-
ing scheme, we also obtain two heuristic two-phase policies π̃1 and π̃2 whose
nonasymptotic analysis in Proposition 2 and Theorem 3 provides two upper
bounds on the optimal performance:

5In [13], Burnashev attempted to tackle the problem of active sequential hypothesis
testing by Chernoff [17]. However, the sensing actions in [13] were allowed to be functions of
the true hypothesis, θ, which, in general, is not observable in the active testing setting [17].
In this sense, [13] only extends Burnashev’s earlier work [12] on variable-length coding over
a discrete memoryless channel (DMC) with feedback to allow for more general channels.
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• Policy π̃1 is a simple two-phase modification of Chernoff’s scheme in which
testing for the maximum likely hypothesis is delayed and contingent on
obtaining a certain level of confidence. More specifically, in its first phase,
π̃1 selects actions in a way that all pairs of hypotheses can be distin-
guished from each other, while its second phase coincides with Chernoff’s
scheme [17] where only the pairs including the most likely hypothesis are
considered. The second phase of π̃1 ensures its asymptotic optimality in
L, while its first phase in a very natural manner weakens the technical
assumption in [17] in which all actions are assumed to discriminate be-
tween all hypotheses pairs or the need for the infinitely often reliance on
suboptimal randomized action deployed in [17, 47].

• Policy π̃2 is only shown to be asymptotically optimal in L under a stronger
condition, which is later shown to be satisfied in the important cases of bi-
nary hypothesis testing and noisy dynamic search in Section 6, however,
with the advantage that here for a fixed M the asymptotic optimality
[17] can be strengthened to a higher order. In particular, in Section 5.1,
we show that when π̃2 is asymptotically optimal it achieves a bounded
difference with the optimal performance. Furthermore, under a techni-
cal condition, policy π̃2 can ensure that information acquisition occurs
at a nonzero rate. Mathematically, this means that, under policy π̃2, the
expected total cost (1) grows in L and M in an order optimal fashion
establishing a lower bound on the maximum achievable information ac-
quisition rate I2 ≤ Imax as well as a lower bound on the optimal reliability
function (optimal error exponent) for all rates R ∈ [0, I2].

To illustrate contributions of our work as well as highlight the rate–
reliability trade-off, we treat the problem of noisy dynamic search in Sec-
tion 6.2. This problem is of independent and extensive interest, and arises in
a variety of fields from fault detection to whereabouts search to noisy group
testing. We specialize the results obtained in the earlier sections for the
general active hypothesis testing, and discuss our findings in the context of
other solutions in the literature. Particularly, in the case of size-independent
Bernoulli noise, the upper bound corresponding to policy π̃2 is shown to be
asymptotically tight in both L and M , hence ensuring the maximum acqui-
sition rate and reliability simultaneously, but there is no guarantee on the
tightness of the bounds for general noise models. The potentially growing gap
between the lower and upper bounds obtained here, in particular, underline
the significant complications of acquiring information in the general active
hypothesis testing over that of (variable-length coding with feedback) [13].
For instance, while in the channel coding context the maximum information
rate and reliability are fully known and match that of channel capacity and
error exponent, they remain largely uncharacterized, beyond our bounds
here, even in the practically relevant problem of a noisy dynamic search.
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As briefly discussed in the Introduction, the above results have all been
obtained under an important technical assumption which is stronger than
those commonly made in the literature. However, we will show that this
assumption can be significantly weakened. More precisely, we show that our
original technical assumption can be replaced with one that is weaker, to the
best of our knowledge, than all other assumptions in the literature [1, 8, 11,
12, 32, 39, 47], and, in particular, subsumes that of [17], to obtain a set of
(nonasymptotic) bounds which are looser than those obtained in Section 4.
On the other hand, these looser (nonasymptotic) bounds are shown to have
similar dominating terms to those obtained in Section 4, and hence ensure
the validity of our asymptotic results in Section 5.

3. Dynamic programming and characterization of an optimal policy. In
this section we first derive the corresponding dynamic programming (DP)
equation for Problem (P). From the DP solution, we characterize an optimal
policy for Problem (P).

The problem of active M -ary hypothesis testing is a partially observable
Markov decision problem (POMDP) where the state is static and observa-
tions are noisy. It is known that any POMDP is equivalent to an MDP with
a compact yet uncountable state space, for which the belief of the decision
maker about the underlying state becomes an information state [33]. In our
setup, thus, the information state at time t is the belief vector ρ(t) whose
ith element is the conditional probability of hypothesis Hi to be true given
the initial belief and all the observations and actions up to time t, that is,
ρi(t) := P ({θ = i}|At−1

0 ,Zt−1
0 ). Accordingly, the information state space is

defined as P(ΩM) := {ρ ∈ [0,1]M :
∑M

i=1 ρi = 1} and the optimal expected
total cost can be defined as follows.

Definition 1. For all ρ ∈ P(ΩM ), let functional V ∗(ρ), hereafter re-
ferred to as the optimal value function, denote the optimal expected to-
tal cost (1) of Problem (P) given the Bayesian prior ρ. In other words,
V ∗(ρ) := min{E[τ ]+LPe} given the initial belief ρ, where the minimization
is taken over the stopping time τ , the sequence of actions and observations,
and the declaration rule.

A general approach to solving Problem (P) is to provide a functional
characterization of V ∗: given V ∗ in its functional form, the optimal expected
total cost for Problem (P) can be obtained by a simple evaluation of V ∗ at
the initial belief ρ(0). Next we state a dynamic programming equation which
characterizes V ∗.

To obtain the dynamic programming equation, consider a single step of
the problem. In one sensing step, the evolution of the belief vector follows
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Bayes’ rule and is given by Φ
a, a measurable function from P(ΩM )×Z to

P(ΩM ) for all a ∈AM :

Φ
a(ρ, z) :=

[

ρ1
qa1(z)

qaρ(z)
, ρ2

qa2(z)

qaρ(z)
, . . . , ρM

qaM(z)

qaρ(z)

]

,(2)

where qaρ(z) =
∑M

i=1 ρiq
a
i (z), and Φ

a(ρ, z) = ρ if qaρ(z) = 0. In other words,
if ρ ∈ P(ΩM ) is an a priori distribution, Φ

a(ρ, z) gives us the posteriori
distribution when sensing action a has been taken and z has been observed.

We define a Markov operator T
a, a ∈AM , such that for any measurable

function g :P(ΩM )→R,

(Tag)(ρ) :=

∫

g(Φa(ρ, z))qaρ(z)dz.(3)

Note that at any given information state ρ, taking sensing action a ∈AM

followed by the optimal policy results in expected total cost 1+ (TaV ∗)(ρ),
where 1 denotes the one unit of time spent to take the sensing action and
collect the corresponding observation sample, and (TaV ∗)(ρ) is the expected
value of V ∗ on the space of posterior beliefs; while declaration j results in
expected cost (1−ρj)L where (1−ρj) is the probability that hypothesisHj is
not true, and L is the penalty of making a wrong declaration. This intuition,
while relying on the compactness of P(ΩM ) to treat various measurability
issues, can be formalized in the following dynamic programming equation.

Fact 1 (Proposition 9.8 in [7]). The optimal value function V ∗ satisfies
the following fixed point equation:

V ∗(ρ) = min
{

1 + min
a∈AM

(TaV ∗)(ρ), min
j∈ΩM

(1− ρj)L
}

.(4)

Definition 2. A Markov stationary policy is a stochastic kernel from
the information state space P(ΩM) to AM ∪ {d} describing the conditional
distribution on sensing actions A(t), t = 0,1, . . . , τ − 1 and stopping time
τ (the choice of declaration d marks the stopping time τ ). In other words,
under policy π, the probability that action a is selected at belief state ρ is
given by π(a|ρ).

As shown in Corollary 9.12.1 in [7], equation (4) provides a characteriza-
tion of an optimal Markov stationary deterministic policy π∗ for Problem (P)
as follows: sensing action a∗ = argmina∈AM

(TaV ∗)(ρ) is the least costly
sensing action, resulting in 1+mina∈AM

(TaV ∗)(ρ), hence is the optimal ac-
tion to take unless wrongly declaring Hi∗ , where i

∗ = argminj∈ΩM
(1− ρj)L,

is even less costly, in which case it is optimal to retire and declare Hi∗ as
the true hypothesis.
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Remark 1. It follows from (4) that if minj∈ΩM
(1− ρj)L≤ 1, then we

have a full characterization of V ∗(ρ) = minj∈ΩM
(1− ρj)L and the optimal

policy. Therefore, the region of interest in our analysis is restricted to L> 1
and PL(ΩM ) := {ρ ∈ P(ΩM ) :minj∈ΩM

(1− ρj)L> 1}.

Before we close this section, we provide the following lemma.

Lemma 1. Suppose there exist β > 0 and a functional V :P(ΩM)→R+

such that for all belief vectors ρ ∈ P(ΩM ),

V (ρ)≤min
{

β + min
a∈AM

(TaV )(ρ), min
j∈ΩM

(1− ρj)βL
}

.

Then V ∗(ρ)≥ 1
βV (ρ) for all ρ ∈ P(ΩM).

The proof is provided in the supplemental article [44], Section 1.

4. Performance bounds. In lieu of numerical approximation of or deriva-
tion of a closed form for V ∗, in Section 4.1 we use Lemma 1 to find lower
bounds for the value function V ∗. In Section 4.2 we analyze two heuristic
schemes to achieve upper bounds for V ∗.

We have the following technical assumptions:

Assumption 1. For any two hypotheses i, j ∈ΩM , i 6= j, there exists an
action a, a ∈AM , such that D(qai ‖q

a
j )> 0.

Assumption 2. There exists ξM <∞ such that

max
i,j∈ΩM

max
a∈AM

sup
z∈Z

log
qai (z)

qaj (z)
≤ ξM .

Assumption 1 ensures the possibility of discrimination between any two
hypotheses, hence ensuring Problem (P) has a meaningful solution. Assump-
tion 2 implies that no two hypotheses are fully distinguishable using a sin-
gle observation sample. Assumption 2 is a technical one which enables our
nonasymptotic characterizations, however, in Section 7 we discuss the con-
sequence of weakening this assumption in detail.

4.1. Lower bounds for V ∗.

Theorem 1. Under Assumption 1 and for L> 1 and ρ ∈ PL(ΩM ),

V ∗(ρ)≥ V1(ρ) :=

[

M
∑

i=1

ρimax
j 6=i

log((1−L−1)/L−1)− log(ρi/ρj)

maxa∈AM
D(qai ‖q

a
j )

−K ′
1

]+

,

where K ′
1 is a constant independent of L whose closed form is given in the

supplemental article [44], equation (144).
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The proof of Theorem 1 is provided in Appendix.
Following Chernoff’s approach (Theorem 2 in [17]), and for large values

of L, the lower bound can be tightened as follows:

Proposition 1. Under Assumptions 1 and 2, and for L> 1, ρ ∈ PL(ΩM ),
and arbitrary δ ∈ (0,1),

V ∗(ρ)≥

[

M
∑

i=1

ρi
[(1− δ) log(L/(K ′ log 2L))−maxj 6=i log(ρi/ρj)]

+

maxλ∈P(AM )minj 6=i
∑

a∈AM
λaD(qai ‖q

a
j ) + δ

×

(

1−
2M(K ′ log 2L/L)δ

ρi

)

−
Mξ2M
δ2

]+

,

where K ′ is a constant independent of δ and L whose closed form is given
in the supplemental article [44], equation (81).

The proof of Proposition 1 is provided in the supplemental article [44],
Section 5.1.

Next we provide another lower bound which is more appropriate for large
values of M . Let I(ρ; qaρ) =H(ρ) − (TaH)(ρ) denote the mutual informa-
tion between θ ∼ ρ and observation Z under action a. Let Dmax(M) :=
maxi,j∈ΩM

maxa∈AM
D(qai ‖q

a
j ), Imax(M) := maxa∈AM

maxρ̂∈P(ΩM ) I(ρ̂; q
a
ρ̂),

and α(L,M) := M−1
M−1+2LImax(M) .

Theorem 2. Under Assumption 1 and for L> 1 and ρ ∈ PL(ΩM ),

V ∗(ρ)≥

[

H(ρ)−H([α(L,M),1−α(L,M)])−α(L,M) log(M − 1)

Imax(M)

+ α(L,M)L

]+

.

Furthermore, under Assumptions 1 and 2, and for L>max{1, logM
Imax(M)} and

arbitrary δ ∈ (0,0.5],

V ∗(ρ) ≥ V2(ρ)

:=

[

H(ρ)−H([δ,1− δ])− δ log(M − 1)

Imax(M)

+
log((1−L−1)/L−1)− log((1− δ)/δ)− ξM

Dmax(M)

× 1{maxi∈ΩM
ρi≤1−δ} −K ′

2

]+

,
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where K ′
2 is a constant independent of δ and L whose closed form is given

in the supplemental article [44], equation (151).6

The proof of Theorem 2 is provided in Appendix.
Theorem 2 can be used to show that when L < logM

Imax(M) , Problem (P)

will have a trivial solution. The precise statement is given by the following
corollary.

Corollary 1. Let L < logM
Imax(M) , and suppose the decision maker has

a uniform prior belief about the hypotheses. For sufficiently large M , the
optimal policy randomly guesses the true hypothesis without collecting any
observation, hence, Pe, the probability of making a wrong declaration, ap-
proaches 1− 1

M .

The proof of Corollary 1 is provided in the supplemental article [44],
Section 2.1.

Remark 2. The lower bounds in Theorems 1 and 2 can be explained
by the following intuition: for any measure of uncertainty U :P(ΩM)→R+,
the number of samples required to reduce the uncertainty down to a target

level Utarget has to be at least
U(ρ(0))−Utarget

∆max(U) , where ∆max(U) is the maximum

amount of reduction in U associated with a single sample, that is, ∆max(U) =
maxa∈AM

maxρ∈P(ΩM ){U(ρ)− (TaU)(ρ)}. The lower bound in Theorem 1 is
associated with such a lower bound when taking U to be the log-likelihood
function, while the lower bound in Theorem 2 is associated with setting U
to be the Shannon entropy.

4.2. Upper bounds for V ∗. Next we propose two Markov policies π̃1 and
π̃2. Policies π̃1 and π̃2 have two operational phases. Phase 1 is the phase in
which the belief about all hypotheses is below a certain threshold, while in
phase 2, the belief about one of the hypotheses has passed that threshold
and actions are selected in favor of that particular hypothesis. The difference
between the two policies is in the actions they take in each phase.

First we describe policy π̃1. Let µ0 and µi, i ∈ΩM , be vectors in P(AM )
such that

µ0 := argmax
λ∈P(AM )

min
i∈ΩM

min
j 6=i

∑

a∈AM

λaD(qai ‖q
a
j ),

µi := argmax
λ∈P(AM )

min
j 6=i

∑

a∈AM

λaD(qai ‖q
a
j ) ∀i ∈ΩM .

6As it will be discussed in Section 5.2, K′
2 can be selected independent of M as well if

supM ξM <∞.
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Moreover, let µ0a and µia denote elements of µ0 and µi corresponding to
a ∈ AM , respectively. Consider a threshold ρ̃, ρ̃ > 1

2 . Markov (randomized)
policy π̃1 is defined as follows:7

• If ρi ≥ 1−L−1, retire and select Hi as the true hypothesis.
• If ρi ∈ [ρ̃,1−L−1), then

– π̃1(a|ρ) = µia ∀a∈AM .
• If ρi <min{ρ̃,1−L−1} for all i ∈ΩM , then

– π̃1(a|ρ) = µ0a ∀a ∈AM .

In [17], Chernoff proposed a policy that, at each time t, selects action a
with probability µi∗a, where i

∗ = argmaxi∈ΩM
ρi(t) denotes the most likely

true hypothesis. In other words, π̃1 coincides with Chernoff’s scheme in its
second phase and ensures its asymptotic optimality in L, while its first phase
in a very natural manner relaxes the technical assumption in [17] where all
actions were required to discriminate between all hypotheses pairs. Following
Chernoff’s approach (Theorem 1 in [17]), we can analyze the performance
of policy π̃1 and obtain the following upper bound for V ∗.

For notational simplicity, let

Iµ0
(M) := min

i∈ΩM

min
j 6=i

∑

a∈AM

µ0aD(qai ‖q
a
j ),

I1(M) :=

(

logM +4ξM
mini∈ΩM

minj 6=i
∑

a∈AM
µjaD(qai ‖q

a
j )

)−2

Iµ0
(M),

Dµi
(M) := min

j 6=i

∑

a∈AM

µiaD(qai ‖q
a
j ) ∀i ∈ΩM .

Proposition 2. Under Assumptions 1 and 2, and for L> 1, ρ ∈ PL(ΩM ),
and arbitrary ι ∈ (0,1),

V ∗(ρ) ≤ V 1(ρ)

:=
H(ρ) + logM + log(ρ̃/(1− ρ̃))

I1(M)
(1 + ι) +

M
∑

i=1

ρi
logL

Dµi
(M)

(1 + ι)

+M

(

2 +
1

((ι/2)/(1 + ι))5(I1(M)/(2ξM ))4

)

×
(

L
(

1− max
j∈ΩM

ρj

))−(ι3/(1+ι)2)I21 (M)/(4ξ3
M

)
+2.

7Policies π̃1 and π̃2 are not unique; they each represent a class of parameterized policies.
In fact, the tilde in π̃1 and π̃2 has been chosen to emphasize the dependency of these
policies on the threshold/parameter ρ̃.
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The proof is based on a performance analysis of policy π̃1 and is provided
in the supplemental article [44], Section 5.2.

Next we describe policy π̃2. Let η0 and ηi, i ∈ΩM , be vectors in P(AM )
such that

η0 := argmax
λ∈P(AM )

min
i∈ΩM

min
ρ̂∈PL(ΩM )

∑

a∈AM

λaD

(

qai

∥

∥

∥

∥

∑

j 6=i

ρ̂j
1− ρ̂i

qaj

)

,

ηi := argmax
λ∈P(AM )

min
ρ̂∈PL(ΩM )

∑

a∈AM

λaD

(

qai

∥

∥

∥

∥

∑

j 6=i

ρ̂j
1− ρ̂i

qaj

)

∀i∈ΩM .

Moreover, let η0a and ηia denote elements of η0 and ηi corresponding to
a ∈ AM , respectively. Consider a threshold ρ̃, ρ̃ > 1

2 . Markov (randomized)
policy π̃2 is defined as follows:

• If ρi ≥ 1−L−1, retire and select Hi as the true hypothesis.
• If ρi ∈ [ρ̃,1−L−1), then

– π̃2(a|ρ) = ηia ∀a∈AM .
• If ρi <min{ρ̃,1−L−1} for all i ∈ΩM , then

– π̃2(a|ρ) = η0a ∀a∈AM .

For notational simplicity, let

Iη0
(M) := min

i∈ΩM

min
ρ̂∈PL(ΩM )

∑

a∈AM

η0aD

(

qai

∥

∥

∥

∥

∑

j 6=i

ρ̂j
1− ρ̂i

qaj

)

,

Iη,ρ̃(M) := min
i∈ΩM

min
k 6=i

min
ρ̂ : ρ̂k≥ρ̃

∑

a∈AM

ηkaD

(

qai

∥

∥

∥

∥

∑

j 6=i

ρ̂j
1− ρ̂i

qaj

)

,

I2(M) := min{Iη0
(M), Iη,ρ̃(M)},

Dηi
(M) := min

ρ̂∈PL(ΩM )

∑

a∈AM

ηiaD

(

qai

∥

∥

∥

∥

∑

j 6=i

ρ̂j
1− ρ̂i

qaj

)

∀i∈ΩM .

Theorem 3. Under Assumptions 1 and 2, and for L > 1 and any ρ ∈
PL(ΩM ),

V ∗(ρ)≤ V 2(ρ) :=
H(ρ) + log(ρ̃/(1− ρ̃)) + ξM + log e

I2(M)
+

M
∑

i=1

ρi
logL

Dηi
(M)

+ 1.

The proof is based on a performance analysis of policy π̃2 and is provided
in the Appendix.

5. Asymptotic analysis and consequences. In this section we state and
discuss the consequence of the bounds obtained in Section 4 in asymptot-
ically large L and M . Note that Table 1 provides a list of the notation
introduced in Section 4.
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Table 1
Summary of notation

Notation Description

Imax(M) maxa∈AM
maxρ̂∈P(ΩM ) I(ρ̂; q

a
ρ̂)

Dmax(M) maxi,j∈ΩM
maxa∈AM

D(qai ‖q
a
j )

µ0 argmaxλ∈P(AM )mini∈ΩM
minj 6=i

∑

a∈AM
λaD(qai ‖q

a
j )

µi argmaxλ∈P(AM )minj 6=i

∑

a∈AM
λaD(qai ‖q

a
j )

Iµ0
(M) mini∈ΩM

minj 6=i

∑

a∈AM
µ0aD(qai ‖q

a
j )

I1(M) ( logM+4ξM
mini∈ΩM

minj 6=i

∑
a∈AM

µjaD(qa
i
‖qa

j
)
)−2Iµ0

(M)

Dµi
(M) minj 6=i

∑

a∈AM
µiaD(qai ‖q

a
j )

η0 argmaxλ∈P(AM )mini∈ΩM
minρ̂∈PL(ΩM )

∑

a∈AM
λaD(qai ‖

∑

j 6=i

ρ̂j

1−ρ̂i
qaj )

ηi argmaxλ∈P(AM )minρ̂∈PL(ΩM )

∑

a∈AM
λaD(qai ‖

∑

j 6=i

ρ̂j
1−ρ̂i

qaj )

Iη0
(M) mini∈ΩM

minρ̂∈PL(ΩM )

∑

a∈AM
η0aD(qai ‖

∑

j 6=i

ρ̂j

1−ρ̂i
qaj )

Iη,ρ̃(M) mini∈ΩM
mink 6=iminρ̂ : ρ̂k≥ρ̃

∑

a∈AM
ηkaD(qai ‖

∑

j 6=i

ρ̂j
1−ρ̂i

qaj )

I2(M) min{Iη0
(M), Iη,ρ̃(M)}

Dηi
(M) minρ̂∈PL(ΩM )

∑

a∈AM
ηiaD(qai ‖

∑

j 6=i

ρ̂j
1−ρ̂i

qaj )

5.1. Order and asymptotic optimality in L. The lower and upper bounds
provided in Section 4 can be applied to establish the order optimality and
asymptotic optimality of the proposed policies as defined below. Let Vπ(ρ)
denote the value function for policy π, that is, the expected total cost
achieved by policy π when the initial belief is ρ.

Definition 3. For fixed M , policy π is referred to as order optimal in
L if for all ρ ∈ P(ΩM ),

lim
L→∞

Vπ(ρ)− V ∗(ρ)

Vπ(ρ)
< 1.

Definition 4. For fixed M , policy π is referred to as asymptotically
optimal of order -1 in L if for all ρ ∈ P(ΩM ),

lim
L→∞

Vπ(ρ)− V ∗(ρ)

Vπ(ρ)
= 0.
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Definition 5. For fixed M , policy π is referred to as asymptotically
optimal of order -2 in L if for all ρ ∈ P(ΩM ), there exists a constant B
independent of L such that

Vπ(ρ)− V ∗(ρ)≤B.

Remark 3. It is clear from the definitions above that order optimality is
weaker than asymptotic optimality of order-1, while asymptotic optimality
of order-2 is the strongest notion. The notion of asymptotic optimality of
order-1 was first introduced in [17], which naturally motivates the extension
of higher orders.

The next corollary establishes order and asymptotic optimality of our
proposed policies.

Corollary 2. Under Assumptions 1 and 2, policy π̃1 is asymptotically
optimal of order-1 in L. Furthermore, policy π̃2 attains asymptotic optimality
of order-2 in L if

min
j 6=i

max
a∈AM

D(qai ‖q
a
j ) =Dηi

(M) ∀i ∈ΩM .(5)

Proof. Using Proposition 1 and by setting δ = (logL)−1/3, we obtain

V ∗(ρ)≥
M
∑

i=1

ρi
logL

Dµi(M)
+O((logL)2/3).(6)

On the other hand, from Proposition 2 and by setting ι = (logL)−1/4, we
get

V ∗(ρ)≤

M
∑

i=1

ρi
logL

Dµi(M)
+O((logL)3/4).(7)

The proof of the first part of the corollary simply follows from Definition 4,
inequality (6) and (7).

Similarly, the proof of the second part of the corollary follows from Defi-
nition 5, Theorems 1 and 3. �

5.2. Order and asymptotic optimality in both L and M . As mentioned
in Section 2.2, one of the main drawbacks of Chernoff’s asymptotic optimal-
ity notion was his neglecting the complementary role of parameter M . In
particular, the notion of asymptotic optimality in L falls short in showing
the tension between using an (asymptotically) large number of samples to
discriminate among a few hypotheses with (asymptotically) high accuracy
or an (asymptotically) large number of hypotheses with a lower degree of
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accuracy. In this section we address this issue by analyzing the bounds when
L and M are both asymptotically large. More specifically, we consider a se-
quence of problems indexed by parameter M in which the set of actions
and observation kernels grow monotonically as M increases, that is, for all
M <M ′,

AM ⊆AM ′ and {qai (·)}i∈ΩM ,a∈AM
⊆ {qai (·)}i∈ΩM′ ,a∈AM′

.(8)

Recall the notation listed in Table 1. Also, let D1(M) and D2(M) denote,
respectively, the harmonic mean of {Dµi

(M)}i∈ΩM
and {Dηi

(M)}i∈ΩM
, that

is,

D1(M) =M

(

M
∑

i=1

1

Dµi
(M)

)−1

, D2(M) =M

(

M
∑

i=1

1

Dηi
(M)

)−1

.(9)

Moreover, let

Imax := sup
M

Imax(M), Dmax := sup
M
Dmax(M),(10)

Imax := inf
M
Imax(M), Dmax := inf

M
Dmax(M),(11)

I2 := inf
M
I2(M), D2 := inf

M
D2(M).(12)

By the definition and from (8), Dmax(M) and Imax(M) are nondecreasing
in M . Furthermore, from Jensen’s inequality,

Imax(M) = max
a∈AM

max
ρ̂∈P(ΩM )

M
∑

i=1

ρ̂iD

(

qai

∥

∥

∥

∥

∥

M
∑

j=1

ρ̂jq
a
j

)

≤ max
a∈AM

max
ρ̂∈P(ΩM )

M
∑

i=1

ρ̂i

M
∑

j=1

ρ̂jD(qai ‖q
a
j )(13)

≤ max
a∈AM

max
i,j∈ΩM

D(qai ‖q
a
j ) =Dmax(M)

and by Assumption 2, we have8

Dmax(M)≤ max
i,j∈ΩM

max
a∈AM

sup
z∈Z

log
qai (z)

qaj (z)
≤ ξM .(14)

Similarly, I2(M) ≤ Dηi
(M) ≤ Dµi

(M) ≤ Dmax(M) ≤ ξM , ∀i ∈ ΩM , for all
M . Since Dmax(M) and Imax(M) are nondecreasing in M , we have Dmax =
Dmax(2), Dmax = limM→∞Dmax(M), Imax = Imax(2) and Imax =
limM→∞ Imax(M).

8Inequality (14) holds true even if Assumption 2 is replaced by a more general assump-
tion such as those suggested in Section 7.
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Furthermore, to ensure that the distance between the observation kernels
remains bounded asM increases (and Dmax <∞), we consider the following
assumption:

Assumption 3. There exists ξ <∞ such that

sup
M
ξM ≤ ξ.

This assumption allows us to specialize Theorem 2 as follows.

Corollary 3. Let ρu,M denote a uniform prior on the set of hypothe-

ses ΩM . Under Assumptions 1, 2 and 3, and for δ = 1
log 2ML and L >

max{2, logM
Imax(M)},

V2(ρu,M )≥

[

logM − 2

Imax

+
log((1−L−1)/L−1)

Dmax

−
log logLM + ξ

Dmax

−K ′
2

]+

,

where K ′
2 is a positive constant independent of L and M .

The proof of Corollary 3 is provided in the supplemental article [44],
Section 2.2.

The next definition extends the notions of order and asymptotic optimal-
ity defined in Section 5.1 to the case where M increases as well.

Definition 6. Policy π is referred to as order optimal and asymptoti-
cally optimal of order -1 in L and M if, respectively,9

lim
L,M→∞

Vπ(ρu,M)− V ∗(ρu,M )

Vπ(ρu,M )
< 1, lim

L,M→∞

Vπ(ρu,M )− V ∗(ρu,M)

Vπ(ρu,M )
= 0.

Corollary 4. Under Assumptions 1, 2 and 3, for L> logM
Imax(M) , and if

I2 > 0, policy π̃2 is order optimal in L and M . Furthermore, if Imax = I2
and Dmax =D2, policy π̃2 is asymptotically optimal of order-1 in L and M .

Proof. The proof follows from Definition 6, Corollary 3 and Theorem 3.
�

5.3. Information acquisition rate and reliability. In this section we ex-
plain the primal (constrained) version of Problem (P), referred to as Prob-
lem (P′), and use the obtained bounds in Section 4 to extend the (informa-
tion theoretic) notions of achievable communication rate and error exponent
to the context of active sequential hypothesis testing.

9Note that unlike Definitions 3–5 where we considered the performance gap between
policy π and the optimal policy π∗ for all values of ρ ∈ P(ΩM ), here we consider the
performance gap specifically at the uniform vector in the information state space.
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Problem (P′) (Information acquisition problem). Consider a sequence
of active hypothesis testing problems indexed by parameter M (i.e., the
number of hypotheses of interest), action space AM and observation ker-
nels {qai (·)}i∈ΩM ,a∈AM

: a Bayesian decision maker with uniform prior belief
ρ(0) = ρu,M is responsible to find the true hypothesis with the objective to

minimize E[τ ] subject to Pe≤ ε,(15)

where τ is the stopping time at which the decision maker retires, Pe is the
probability of making a wrong declaration, and ε > 0 denotes the desired
probability of error. Furthermore, let the set of actions and observation
kernels grow monotonically as M increases, that is, for all M <M ′,

AM ⊆AM ′ and {qai (·)}i∈ΩM ,a∈AM
⊆ {qai (·)}i∈ΩM′ ,a∈AM′

.(16)

Let Eπ[τ ] and Peπ denote, respectively, the expected stopping time (or,
equivalently, the expected number of collected samples) and the probability
of error under policy π. Following the notation in [49], we define Mπ(t, ε) as
the maximum number of hypotheses among which policy π can find the true
hypothesis with Eπ[τ ]≤ t and Peπ ≤ ε. Policy π is said to achieve information
acquisition rate R> 0 with reliability (also known as error exponent) E > 0
if

lim
t→∞

1

t
logMπ(t,2

−Et) =R.(17)

For a fixed number of hypotheses M , hence at information acquisition rate
R= 0, policy π is said to achieve reliability E > 0 if

lim
t→∞

−1

t
logPeπ(t,M) =E,(18)

where Peπ(t,M) is the minimum probability of error that policy π can guar-
antee for M hypotheses with the constraint Eπ[τ ]≤ t.

The reliability function E(R) is defined as the maximum achievable error
exponent at information acquisition rate R.

Before we proceed with the upper and lower bounds on the maximum
achievable information acquisition rate and the optimal reliability function,
we refer the reader to Table 1 for the list of notation introduced in Section 4.
Also recall that D1(M) and D2(M) denote, respectively, the harmonic mean
of {Dµi

(M)}i∈ΩM
and {Dηi

(M)}i∈ΩM
.

Corollary 5. For any given fixedM (rate R= 0), no policy can achieve
reliability higher than D1(M). Also, no policy can achieve positive reliability
E > 0 at rates higher than Imax. Furthermore,

E(R)≤Dmax

(

1−
R

Imax

)

, R ∈ (0, Imax).(19)
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Remark 4. Corollary 5 establishes an upper bound, Imax, on the maxi-
mum achievable information acquisition rate. As shown in the supplemental
article [44], Section 3.3, this result can be strengthened to show that no
policy can achieve diminishing error probability at rates higher than Imax.

Corollary 6. For fixed M , hence at rate R= 0, a policy π can achieve
the maximum reliability, that is, E =D1(M), if and only if it is asymptoti-
cally optimal (of order-1 or higher) in L. Furthermore, a policy π can achieve
a nonzero rate R> 0 with nonzero reliability E > 0 only if it is order optimal
in L and M .

Corollary 6 implies that for fixed M , hence at R= 0, policies π̃1 and π∗

achieve the optimal error exponent, while policy π̃2 might or might not [de-
pending on condition (5)]. Furthermore, Corollary 6, in effect, underlines the
deficiency of characterizing the solution to Problems (P) in terms of L in
isolation from M , hence, Chernoff’s notion of asymptotic optimality (solely
in L). In particular, an order optimal policy can achieve nonzero rate and re-
liability simultaneously, an improvement over π̃1 (and all extensions of [17]).

Corollary 7. Policy π̃2 achieves rate R ∈ [0, I2] with reliability E if

E ≤D2

(

1−
R

I2

)

.(20)

Figure 1 summarizes the results above. The upper bound on the reliability
function is shown in red. Policy π̃1 achieves the optimal reliability D1(M)
for fixed M (at R = 0) with no provable guarantee for R > 0 (this point
is shown in green), while policy π̃2 ensures an exponentially decaying error
probability (the error exponent is shown in blue) for R ∈ [0, I2).

Fig. 1. Lower and upper bounds on the optimal reliability function E(R).
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Remark 5. It can be shown that any optimal policy π∗ for Problem (P)
also achieves any rate R ∈ [0, I2] with reliability E satisfying (20) for Prob-
lem (P′).

The proofs of all the results in this section are provided in the supple-
mental article [44], Section 3, and are based on the fact that Problem (P)
can be viewed as a Lagrangian relaxation of Problem (P′). It is somewhat
intuitive that as L→ ∞ the solution of Problem (P) is closely related to
that of Problem (P′) when ε→ 0. The following lemma makes this intuition
precise.

Lemma 2. Let E[τ∗ε ] denote the minimum expected number of samples
required to achieve Pe≤ ε. We have

E[τ∗ε ]≥ (1− εL)(V ∗(ρ(0))− 1),(21)

where V ∗(ρ(0)) is the optimal solution to Problem (P) for prior belief ρ(0)
and penalty of wrong declaration L.

Given the above connection, Corollary 5 follows readily from the lower
bounds obtained in Proposition 1 and Theorem 2 (in particular, its Corol-
lary 3), and Corollaries 6 and 7 follow from the upper bounds given by
Proposition 2 and Theorem 3.

6. Examples. In this section we consider important special cases of the
active hypothesis testing to provide some intuition about the conditions
of Corollaries 2 and 4, and, in particular, establish the order-2 asymptotic
optimality of π̃2 for a fixed value of M and rate–reliability optimality of
policy π̃2.

6.1. Binary hypothesis testing. Consider Problem (P) for M = 2. In this
setting, policies π̃1 and π̃2 are equivalent and by Corollary 2, both policies
are asymptotically optimal of order-1 in L. Asymptotic optimality of order-2
of π̃1 and π̃2 is also verified from Corollary 2 since equality (5) holds trivially
for M = 2. Furthermore, we obtain

V ∗(ρ) = ρ1
logL− log(ρ1/ρ2)

maxa∈AM
D(qa1‖q

a
2)

+ ρ2
logL− log(ρ2/ρ1)

maxa∈AM
D(qa2‖q

a
1)

+O(1).

The problem of reliability (error exponent) associated with passive bi-
nary hypothesis testing with fixed-length (nonsequential) as well as variable-
length (sequential) sample size has been studied by [10, 19, 25]. The gener-
alization to channel coding with feedback with two messages was addressed
in [4, 5, 46]. Recently, the authors in [26] and [50] have generalized this
problem for fixed-length and variable-length sample size, respectively, to the
active binary hypothesis testing in the non-Bayesian context, and identified
the error exponent corresponding to both error types. Our work provides
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nonasymptotic bounds as well as an asymptotic optimal solution in a total
cost and Bayesian sense, and is consistent with the findings in [50].

6.2. Noisy dynamic search. Consider the problem of sequentially search-
ing for a single target in M locations where the goal is to find the target
quickly and accurately. In each step, the player can inspect an allowable
combination of the locations, and the outcome of the inspection is noisy.
This problem is closely related to the problems of fault detection, whereabouts
search and group testing. In fault detection, the objective is to determine the
faulty component in a system known to have one failed component [15, 42].
In whereabouts search, the goal is to find an object which is hidden in one
of M boxes, where it is usually assumed that there is no false alarm, that
is, the outcome of inspecting box i is always 0 if no object is present, and is
a Bernoulli random variable with a known parameter otherwise [30, 56]. In
group testing, the goal is to locate the nonzero element10 of a vector in R

M

with a possible noisy linear measurement of the vector [16, 52]. One possible
search strategy for these problems is the maximum likelihood policy. In the
case of fault detection/whereabouts search, this policy is equivalent to one
that inspects a segment with the highest probability of having the faulty
component/hidden object, while in the case of group testing, it is equivalent
to measuring the most likely nonzero element of the vector. However, as the
number of segments or the dimension of vectors, M , increases, the scheme
becomes impractical. In such a case, it is more intuitive to initially follow
a noisy binary search [14, 29, 48] and narrow down the search to single
segments only after we have collected sufficient information supporting the
presence of the target in those segments [51, 55].

In this section, we first consider the problem of a noisy dynamic search
with size-dependent Bernoulli noise whose special cases have been indepen-
dently studied in [14, 16, 29, 30, 42, 48, 52, 56].11 Remark 6 at the end of
this section discusses a generalization for the symmetric noise model of [15].

Let a⊂ΩM be a subset of locations that can be simultaneously inspected,
referred to as the inspection region hereafter, and let AM = 2ΩM be the
collection of all allowable inspection regions. We assume that the outcome
of an inspection depends on the size of the inspection region. More precisely,
the outcome of inspecting region a, where |a|= n, is a random variable with
Bernoulli distribution:

qai =

{

B(1− pn), if i ∈ a and |a|= n

B(pn), if i /∈ a and |a|= n
∀i ∈ΩM ,∀a ∈AM ,

where p1 > 0 and for all n, pn ≤ pn+1 and pn ≤ p for some p < 0.5.

10Group testing with d > 1 nonzero elements is also a special case of active hypothesis
testing with

(

M

d

)

hypotheses (possible configurations).
11Of course in this paper we are interested in a sequential setting where the sample

size is not fixed a priori and is determined by the observation outcomes.
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Lemma 3. Consider the problem of a noisy dynamic search with size-
dependent Bernoulli noise explained above. We have

min
j 6=i

max
a∈AM

D(qai ‖q
a
j ) =Dηi

(M) = (1− 2p1) log
1− p1
p1

∀i∈ΩM ,(22)

D2 =Dmax = (1− 2p1) log
1− p1
p1

,(23)

0< 1− sup
n
H([pn,1− pn])≤ I2 ≤ Imax ≤ 1−H([p1,1− p1]).(24)

The proof is provided in the supplemental article [44], Section 4.
Lemma 3, together with Corollaries 2 and 4, implies that π̃2 attains

asymptotic optimality of order-2 in L, and order optimality in L and M .
Furthermore, for the special case of size-independent Bernoulli noise where
0< p1 = p2 = · · ·= p < 0.5, policy π̃2 attains asymptotic optimality of order-
1 in L and M .

The active hypothesis testing scheme proposed by Chernoff [17] as well
as its variants [8, 11], when specialized to a noisy dynamic search with
size-independent Bernoulli noise, simplifies to one that inspects, at each
instant, a location with the highest probability of having the target. This
scheme, which was also studied in [15] in a finite horizon context, has an
information acquisition rate that is restricted to zero, while at zero rate,
it achieves asymptotic optimality and maximum error exponent Dmax =
(1−2p) log 1−p

p . In contrast, in [14, 29], a noisy binary search was proposed in
which the locations are partitioned along the median of the posterior and, in
effect, are inspected along a generalized binary tree. It was shown in [14, 29]
that the proposed policy can achieve any rate R < 1 −H([p,1 − p]) with
reliability E(R) = 1−H([p,1− p])−R. In other words, the proposed policy
in [14, 29] is asymptotically optimal in M (since 1−H([p,1− p]) = Imax)
but only order optimal in L (since 0< 1−H([p,1− p])< (1− 2p) log 1−p

p =

Dmax). Lemma 3 shows that, in the case of size-independent Bernoulli noise,
our proposed policy π̃2 combines the best of the above two approaches:
in its first phase, by randomly selecting actions from AM , it ensures the
maximum acquisition rate obtained by the noisy binary search of [14, 29],
while its second phase coincides with the schemes in [8, 11, 17], ensuring the
maximum feasible error exponent.

Remark 6. Lemma 3 can be extended beyond the Bernoulli noise model
so long as the observation kernels

qai (·) =

{

fn(·), if i ∈ a and |a|= n

f̄n(·), if i /∈ a and |a|= n
∀i ∈ΩM ,∀a ∈AM ,
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satisfy the following conditions:

fn(z) = f̄n(b− z) ∀z ∈ Z for some b ∈R,(25)

D(fn‖αfn + ᾱf̄n)≥D(fn+1‖αfn+1 + ᾱf̄n+1) ∀α ∈ [0,1], ᾱ= 1−α,(26)

sup
n

sup
z∈Z

fn(z)/f̄n(z)<∞.(27)

In particular, under these conditions

min
j 6=i

max
a∈AM

D(qai ‖q
a
j ) =Dηi

(M) =D(f1‖f̄1) ∀i ∈ΩM ,(28)

D2 =Dmax =D(f1‖f̄1),(29)

inf
n
D

(

fn

∥

∥

∥

∥

1

2
fn +

1

2
f̄n

)

≤ I2 ≤ Imax ≤D

(

f1

∥

∥

∥

∥

1

2
f1 +

1

2
f̄1

)

.(30)

Condition (25) implies that given a fixed inspection area, the collected
samples provide identical information regarding the presence of the target or
its absence. Condition (26) implies that the samples become less informative
as the size of the inspection region increases. Conditions (25) and (26) are
natural, while condition (27) is a technical one to ensure that Assumptions 2
and 3 hold (we address weakening these assumptions in Section 7).

7. Discussions. In this section we provide a discussion on the technical
assumptions of the paper. In particular, we discuss the necessity of our
Assumptions 1 and 2, and compare them with the common assumptions in
the literature. In contrast to Assumption 1 which is shown to be necessary
for the problem of active hypothesis testing to have a meaningful solution,
Assumption 2 can be relaxed to more general assumptions without affecting
the asymptotic results of the paper.

7.1. Assumption 1. We first discuss the necessity of Assumption 1. If
Assumption 1 does not hold, then there exist two hypotheses i, j ∈ΩM , i 6= j
such that for all a ∈AM , D(qai ‖q

a
j ) = 0. In other words, qai (·) = qaj (·) for all

a ∈AM , and, hence, the decision maker is not capable of distinguishing these
two hypotheses. In this sense, Assumption 1 is necessary for Problem (P) to
be meaningful.

Next we compare Assumption 1 to its counterpart in [17]:

Assumption 1′. D(qai ‖q
a
j )> 0, ∀i, j ∈ΩM , i 6= j, ∀a ∈AM .

This assumption assures consistency (see Lemma 1 in [17]), that is,
argmaxi∈ΩM

ρi(t) converges exponentially fast to the true hypothesis regard-
less of the way the sensing actions are selected. However, this assumption
is very restrictive and does not hold in many problems of interest such as
channel coding with feedback [12] and noisy dynamic search (e.g., one can-
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not discriminate between locations 1 and 2 by inspecting location 3). It was
remarked in [17], Section 7, that the above restrictive assumption can be
relaxed if the proposed scheme is modified to take a (possibly randomized)
action capable of discriminating between all hypotheses pairs infinitely of-
ten (e.g., at any time t when t is a perfect square). In this paper, however,
we took a different approach and constructed policy π̃1, a simple two-phase
modification of Chernoff’s original scheme in which testing for the maximum
likely hypothesis is delayed and contingent on obtaining a certain level of
confidence.

7.2. Assumption 2. We first discuss the necessity of Assumption 2. For
observation kernels with bounded support, Assumption 2 is a necessary con-
dition to ensure that the observation kernels are absolutely continuous with
respect to each other and, hence, no observation is noise free. Although this
assumption might hold in many settings such as the problem of a noisy dy-
namic search with Bernoulli noise explained in Section 6.2, it does not hold
in general for observation kernels with unbounded support such as Gaussian
distribution. Next we replace Assumption 2 by more general assumptions
on the observation kernels and discuss the consequences.

To the best of our knowledge, Assumption 2′ below, given first by [17], is
the weakest condition in the literature of hypothesis testing and sequential
analysis, and is often interpreted to an assumption which limits the excess
over the boundary at the stopping time [38].

Assumption 2′. There exists ξM <∞ such that

max
i,j∈ΩM

max
a∈AM

∫

Z
qai (z)

∣

∣

∣

∣

log
qai (z)

qaj (z)

∣

∣

∣

∣

2

dz ≤ ξM .

Proposition 1 remains valid even if Assumption 2 is replaced with Assump-
tion 2′ (with the only change that ξ2M is replaced with ξM in the bound). The
proof of Proposition 2 relies on Chernoff’s approach [17], and the asymp-
totic behavior of the bound remains intact if Assumption 2 is replaced with
Assumption 2′. However, as shown in the proof of this proposition in the
supplemental article [44], Section 5, Assumption 2 allows us to give a pre-
cise nonasymptotic characterization of the bound by applying the method of
bounded differences and, in particular, McDiarmid’s inequality [41].

Next we consider the consequence of weakening Assumption 2 on Theo-
rems 2 and 3, hence on the performance of policy π̃2. To do so, we consider
an even weaker assumption than Assumption 2′ as given below:

Assumption 2′′. There exist ξM <∞ and γ > 0 such that

max
i,j∈ΩM

max
a∈AM

∫

Z
qai (z)

∣

∣

∣

∣

log
qai (z)

qaj (z)

∣

∣

∣

∣

1+γ

dz ≤ ξM .
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Define function ψM :R+ →R+ as follows:

ψM (b) := max
i,j∈ΩM

max
a∈AM

∫

Z
qai (z)

[

log
qai (z)

qaj (z)

]

b

dz,

where [g]b = g1{g>b}. Note that ψM (b) is in general nonincreasing in b, and

if Assumption 2′′ holds, ψM (b)≤ b−γξM . Under the weaker Assumption 2′′

(and naturally Assumption 2′), Theorems 2 and 3 can be replaced by the
following:

Proposition 3. Under Assumptions 1 and 2′′ and for L > logM
Imax(M) ,

ρ ∈ PL(ΩM ), δ ∈ (0,0.5], and b > 0,

V ∗(ρ)≥ V3(ρ) :=
1

1 +ψM (b)/Dmax(M)

×

[

H(ρ)−H([δ,1− δ])− δ log(M − 1)

Imax(M)

+
log((1−L−1)/L−1)− log((1− δ)/δ)− b

Dmax(M)

× 1{maxi∈ΩM
ρi≤1−δ} −K ′

3

]+

,

where K ′
3 is a positive constant independent of δ and L. In addition, if

Assumption 3 also holds, then K ′
3 can be selected independent of M as well.

The proof is provided in the supplemental article [44], Section 8.1.

Proposition 4. Under Assumptions 1 and 2′′, and for L > 1 and ρ ∈

PL(ΩM ), ∃b′ ∈ (0,∞) such that for all b≥ b′, 0≤ (1+(log e)/b)2−bψM (b)
I2(M)−ψM (b) < 1, and

V ∗(ρ) ≤ V 3(ρ)

:=

(

1−
(1 + (log e)/b)2−bψM (b)

I2(M)−ψM (b)

)−1

×

(

H(ρ) + log(ρ̃/(1− ρ̃)) + b+ log e

I2(M)− ψM (b)
+

M
∑

i=1

ρi
logL

Dηi
(M)−ψM (b)

)

+1.

The proof is provided in the supplemental article [44], Section 8.2.
As we discussed, ψM (b) ≤ b−γξM under Assumption 2′′. Furthermore, if

Assumption 3 holds, then supM ψM (b)≤ b−γξ. In other words, we can select
b as a function of L and M (e.g., b= log logLM ) such that V3 and V 3 have

the same dominating terms (in L and M ) as V2 and V 2, respectively.
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In summary, the asymptotic results of the paper presented in Section 5
hold under the weaker Assumptions 2′ and 2′′ replacing Assumption 2 (with
the only exception that the asymptotic optimality of order-2 of policy π̃2
established in Corollary 2 is degraded to asymptotic optimality of order-1).
Our choice to present the work under Assumption 2, however, significantly
simplifies the presentation and also enables a precise nonasymptotic charac-
terization of the lower and upper bounds.

8. Conclusions and future work. In this paper we considered the problem
of active sequential M -ary hypothesis testing. Using a DP formulation, we
characterized the optimal value function V ∗. Three lower bounds (comple-
mentary for various values of the parameters of the problem) were obtained
for the optimal value function V ∗. We also proposed two heuristic policies
whose performance analysis resulted in two upper bounds for V ∗. Subse-
quently, we discussed important consequences of the bounds and established
order and asymptotic optimality of the proposed policies under different sce-
narios. An important problem which remains is further improvement of the
performance bounds.

In this paper we focused on sequential policies, that is, policies whose
sample size is not known initially and is dependent on the observation out-
comes. There exist other types of policies in the literature. For example,
nonsequential policies take a fixed number of samples (independent of ob-
servation outcomes) and make the final decision afterward, while multi-stage
policies (introduced in [3, 40]) can take a retire–declare action only at the
end of each stage, and stages are not necessarily of the same size. Comparing
the performance of sequential, nonsequential and multi-stage policies in the
context of active hypothesis testing is an area of future work.

In this paper we assumed that all sensing actions incur one unit of cost
(each action can be executed in one unit of time). It is also of interest
to consider the scenario where there is a cost associated with each action
which, for example, characterizes the amount of energy or time required to
perform that action; and the goal is to find the true hypothesis subject to
a cost criterion. Such generalization has been studied for the problem of
variable-length coding with feedback in [45].

APPENDIX: PROOF OF THEOREMS 1–3

A.1. Proof of Theorem 1. Let Γ be the set of all mappings γ :ΩM →ΩM
such that γ(i) 6= i for i ∈ΩM . Now associated with any γ ∈ Γ, define

V1
γ(ρ) =

[

M
∑

i=1

ρi
log((1−L−1)/L−1)− log(ρi/ργ(i))

maxâ∈AM
D(qâi ‖q

â
γ(i))

−K ′
1

]+

.(31)



28 M. NAGHSHVAR AND T. JAVIDI

Next we use Lemma 1 to show that V ∗ ≥ V1
γ for all γ ∈ Γ. In partic-

ular, we show that for all γ ∈ Γ and all ρ ∈ P(ΩM ), V1
γ(ρ) ≤ min{1 +

mina∈AM
(TaV1

γ)(ρ),minj∈ΩM
(1 − ρj)L}. For any ρ such that V1

γ(ρ) = 0,
the inequality holds trivially. For V1

γ(ρ)> 0 and for any action a ∈AM , we
have

(TaV1
γ)(ρ)

≥

M
∑

i=1

∫

ρiq
a
i (z)

log((1−L−1)/L−1)− log(ρiq
a
i (z)/(ργ(i)q

a
γ(i)(z)))

maxâ∈AM
D(qâi ‖q

â
γ(i))

dz

−K ′
1

= V1
γ(ρ)−

M
∑

i=1

ρi
D(qai ‖q

a
γ(i))

maxâ∈AM
D(qâi ‖q

â
γ(i))

≥ V1
γ(ρ)− 1.

Claim 1 (In Section 9.1 of the supplemental article [44]). Constant K ′
1

can be selected independent of L such that V1
γ(ρ) ≤ minj∈ΩM

(1 − ρj)L is
satisfied for all γ ∈ Γ.

Using Claim 1 and letting V1(·) =maxγ∈Γ V1
γ(·), we have the assertion of

the theorem.

A.2. Proof of Theorem 2. We first show that for all ρ ∈ P(ΩM ),

V ∗(ρ)≥

[

H(ρ)−H([α(L,M),1− α(L,M)])−α(L,M) log(M − 1)

Imax(M)(32)

+α(L,M)L

]+

.

Note that the right-hand side of (32) can be written as

G(ρ) :=

[

H(ρ)−H(ν)

Imax(M)
+α(L,M)L

]+

,(33)

where

ν =

[

α(L,M)

M − 1
, . . . ,

α(L,M)

M − 1
,1− α(L,M)

]

.(34)

Next we show that G(ρ)≤min{1 +mina∈AM
(TaG)(ρ),minj∈ΩM

(1− ρj)L}
for all ρ ∈ P(ΩM ). For any ρ such that G(ρ) = 0, the inequality holds triv-
ially. For G(ρ)> 0 and for any action a ∈AM , we have

(TaG)(ρ) =

∫

H(Φa(ρ, z))qaρ(z)dz −H(ν)

Imax(M)
+ α(L,M)L
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=
H(ρ)− I(ρ; qaρ)−H(ν)

Imax(M)
+ α(L,M)L

(35)

=G(ρ)−
I(ρ; qaρ)

Imax(M)

≥G(ρ)− 1,

where the last inequality follows from the fact that

I(ρ; qaρ)≤ max
â∈AM

max
ρ̂∈P(ΩM )

I(ρ̂; qâρ̂) = Imax(M).

Therefore,

G(ρ)≤ 1 + min
a∈AM

(TaG)(ρ).

What remains is to show that G(ρ)≤minj∈ΩM
(1− ρj)L. Rewriting G as

G(ρ) =

[∑M−1
i=1 ρi log(1/ρi) + (1−

∑M−1
i=1 ρi) log(1/(1−

∑M−1
i=1 ρi))−H(ν)

Imax(M)

+ α(L,M)L

]+

,

we can compute the gradient at ν . For all i= 1,2, . . . ,M − 1,

∂G

∂ρi
(ν) =

(

log
1

ρi
− log e− log

1

1−
∑M−1

i=1 ρi
+ log e

)

/

Imax(M)

∣

∣

∣

∣

ρ=ν

=

(

log
ρM
ρi

)

/

Imax(M)
∣

∣

∣

ρ=ν
=

(

log
1−α(L,M)

α(L,M)/(M − 1)

)

/

Imax(M) = L.

Furthermore, G(ν) = α(L,M)L= (1−νM )L. Without loss of generality and
since both functions G(ρ) and minj∈ΩM

(1− ρj)L are symmetric, let us fo-
cus on PM(ΩM ) := {ρ ∈ P(ΩM ) :ρM ≥ ρi, ∀i ∈ ΩM − {M}}. In this case,

minj∈ΩM
(1− ρj)L= (1− ρM )L=

∑M−1
i=1 ρiL and, hence, minj∈ΩM

(1− ρj)L
is the tangent hyperplane to G(ρ) at ν . This along with concavity of function
G implies G(ρ)≤minj∈ΩM

(1− ρj)L. Using Lemma 1, we have the assertion
of the theorem.

Next we need to show that

V ∗(ρ)≥ V2(ρ) =

[

H(ρ)−H([δ,1− δ])− δ log(M − 1)

Imax(M)

+
log((1−L−1)/L−1)− log((1− δ)/δ)− ξM

Dmax(M)
(36)

× 1{maxi∈ΩM
ρi≤1−δ} −K ′

2

]+

.
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We show this in two steps. First we consider the following function:

J ′(ρ) :=

[

M
∑

i=1

ρi
log((1−L−1)/L−1)− log(ρi/(1− ρi))

Dmax(M)
−K ′

2

]+

.(37)

We use Jensen’s inequality to show that

J ′(ρ)≤ 1 + min
a∈AM

(TaJ ′)(ρ) ∀ρ ∈ P(ΩM ).(38)

For any ρ such that J ′(ρ) = 0, inequality (38) holds trivially. For any ρ such
that J ′(ρ)> 0 and for any a ∈AM , we have

(TaJ ′)(ρ)

≥
M
∑

i=1

∫

ρiq
a
i (z)

log((1−L−1)/L−1)− log(ρiq
a
i (z)/

∑

j 6=i ρjq
a
j (z))

Dmax(M)
dz

−K ′
2

= J ′(ρ)−

M
∑

i=1

ρi

∫

qai (z) log(q
a
i (z)/

∑

j 6=i(ρj/(1− ρi))q
a
j (z))dz

Dmax(M)

≥ J ′(ρ)−

M
∑

i=1

ρi

∑

j 6=i(ρj/(1− ρi))D(qai ‖q
a
j )

Dmax(M)

≥ J ′(ρ)− 1.

Next we define J(ρ) =max{J ′(ρ), J ′′(ρ)}, where J ′′(ρ) is the right-hand
side of (36), that is,

J ′′(ρ) =

[

H(ρ)−H([δ,1− δ])− δ log(M − 1)

Imax(M)

+
log((1−L−1)/L−1)− log((1− δ)/δ)− ξM

Dmax(M)
(39)

× 1{maxi∈ΩM
ρi≤1−δ} −K ′

2

]+

.

• Case 1: For all ρ such that J(ρ) = 0 or J(ρ) = J ′(ρ), it is trivial from
(38) that

J(ρ) = J ′(ρ)≤ 1 + min
a∈AM

(TaJ ′)(ρ)≤ 1 + min
a∈AM

(TaJ)(ρ).(40)

• Case 2: For all ρ such that J(ρ) = J ′′(ρ)> 0, and for any action a ∈AM ,
we have

(TaJ)(ρ) =

∫

J(Φa(ρ, z))qaρ(z)dz
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(a)

≥

∫

H(Φa(ρ, z))qaρ(z)dz −H([δ,1− δ])− δ log(M − 1)

Imax(M)

+
log((1−L−1)/L−1)− log((1− δ)/δ)− ξM

Dmax(M)

× 1{maxi∈ΩM
ρi≤1−δ} −K ′

2(41)

= J ′′(ρ)−
I(ρ; qaρ)

Imax(M)

≥ J ′′(ρ)− 1

(b)
= J(ρ)− 1,

where (a) follows from Claim 2 below and (b) holds since ρ is such that
J(ρ) = J ′′(ρ).

Claim 2 (In Section 9.2 of the supplemental article [44]). Let ρ be such
that J(ρ) = J ′′(ρ)> 0. If Assumption 2 holds, then for all actions a ∈ AM

and observations z ∈ Z,

J(Φa(ρ, z))≥
H(Φa(ρ, z))−H([δ,1− δ])− δ log(M − 1)

Imax(M)

+
log((1−L−1)/L−1)− log((1− δ)/δ)− ξM

Dmax(M)
(42)

× 1{maxi∈ΩM
ρi≤1−δ} −K ′

2.

Combining (40) and (41), we have that

J(ρ)≤ 1 + min
a∈AM

(TaJ)(ρ).(43)

We also have the following:

Claim 3 (In Section 9.3 of the supplemental article [44]). For L >
logM

Imax(M) , constant K ′
2 can be selected independent of δ and L such that

J(ρ) ≤minj∈ΩM
(1− ρj)L. Furthermore, if supM ξM <∞, then K ′

2 can be
selected independent of M as well.

Lemma 1, together with (43) and Claim 3, implies that V ∗ ≥ J =
max{J ′, J ′′} ≥ J ′′ = V2. This is a slightly stronger result than (36).

A.3. Proof of Theorem 3. Recall that ρi(n) denotes the posterior belief
about hypothesis Hi after n observations. Let τ , τi, i ∈ ΩM , be Markov
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stopping times defined as follows:

τ := min
{

n : max
j∈ΩM

ρj(n)≥ 1−L−1
}

,(44)

τi := min{n :ρi(n)≥ 1−L−1}.(45)

From (1), the expected total cost under policy π̃2 is upper bounded as

Vπ̃2(ρ) = Eπ̃2

[

τ + min
j∈ΩM

(1− ρj(τ))L
]

≤ Eπ̃2 [τ ] + 1(46)

≤
M
∑

i=1

ρiEπ̃2 [τi|θ = i] + 1,

where ρ= [ρ1, ρ2, . . . , ρM ] = [ρ1(0), ρ2(0), . . . , ρM (0)] and the last inequality
follows from the fact that τ ≤ τi, ∀i ∈ ΩM . For notational simplicity, sub-
script π̃2 is dropped for the rest of the proof.

Next we find an upper bound for E[τi|θ = i], i ∈ΩM . Let

Un := log
ρi(n)

1− ρi(n)
− log

ρ̃

1− ρ̃
(47)

and let Fn denote the history of previous actions and observations up to time
n, that is, Fn := σ{ρ(0),A(0),Z(0), . . . ,A(n−1),Z(n−1)}. Under policy π̃2,
the sequence {Un}, n= 0,1, . . . , forms a submartingale with respect to the
filtration {Fn} with the following properties:

(C1) If Un < 0 and ρj(n)< ρ̃ for all j ∈ΩM (⇒ P (A(n) = a) = η0a):

E[Un+1 −Un|Fn, θ = i]

=
∑

a∈AM

P (A(n) = a)E[Un+1 −Un|Fn, θ = i,A(n) = a]

=
∑

a∈AM

η0aE[Un+1 −Un|Fn, θ = i,A(n) = a]

=
∑

a∈AM

η0aE

[

log
ρi(n)q

a
i (Z)

∑

j 6=i ρj(n)q
a
j (Z)

− log
ρi(n)

1− ρi(n)

∣

∣

∣

∣

Fn, θ = i

]

=
∑

a∈AM

η0a

∫

qai (z) log
qai (z)

∑

j 6=i(ρj(n)/(1− ρi(n)))qaj (z)
dz

≥ max
λ∈P(AM )

min
i∈ΩM

min
ρ̂∈PL(ΩM )

∑

a∈AM

λaD

(

qai

∥

∥

∥

∥

∑

j 6=i

ρ̂j
1− ρ̂i

qaj

)

= Iη0
(M).
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If Un < 0 and ρk(n)≥ ρ̃ for some k 6= i (⇒ P (A(n) = a) = ηka):

E[Un+1 −Un|Fn, θ = i]

=
∑

a∈AM

ηkaE[Un+1 −Un|Fn, θ = i,A(n) = a]

=
∑

a∈AM

ηka

∫

qai (z) log
qai (z)

∑

j 6=i(ρj(n)/(1− ρi(n)))qaj (z)
dz

≥ min
i∈ΩM

min
k 6=i

min
ρ̂ : ρ̂k≥ρ̃

∑

a∈AM

ηkaD

(

qai

∥

∥

∥

∥

∑

j 6=i

ρ̂j
1− ρ̂i

qaj

)

= Iη,ρ̃(M);

(C2) If Un ≥ 0 (ρi(n)≥ ρ̃⇒ P (A(n) = a) = ηia):

E[Un+1 −Un|Fn, θ = i]

=
∑

a∈AM

ηiaE[Un+1 −Un|Fn, θ = i,A(n) = a]

=
∑

a∈AM

ηia

∫

qai (z) log
qai (z)

∑

j 6=i(ρj(n)/(1− ρi(n)))qaj (z)
dz

≥ max
λ∈P(AM )

min
ρ̂∈PL(ΩM )

∑

a∈AM

λaD

(

qai

∥

∥

∥

∥

∑

j 6=i

ρ̂j
1− ρ̂i

qaj

)

=Dηi
(M);

(C3) |Un −Un−1| ≤maxi,j∈ΩM
maxa∈AM

supz∈Z log
qai (z)
qaj (z)

≤ ξM .

Stopping time τi defined in (45) can be rewritten as

τi =min{n :ρi(n)≥ 1−L−1}

=min

{

n :
ρi(n)

1− ρi(n)
≥

1−L−1

L−1

}

=min

{

n : log
ρi(n)

1− ρi(n)
− log

ρ̃

1− ρ̃
≥ log

1−L−1

L−1
− log

ρ̃

1− ρ̃

}

(48)

= min

{

n :Un ≥ log
1−L−1

L−1
− log

ρ̃

1− ρ̃

}

≤min{n :Un ≥ logL}.

The assertion of the theorem follows from (48) and the following lemma.
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Lemma 4. Consider the sequence {Un}, n= 0,1, . . . defined in (47), and
assume there exist positive constants K1 ≤K2 ≤K3 such that

E[Un+1|Fn, θ = i]≥ Un +K1 if Un < 0,

E[Un+1|Fn, θ = i]≥ Un +K2 if Un ≥ 0,

|Un+1 −Un| ≤K3.

Consider the stopping time υ =min{n :Un ≥B}, B > [U0]
+. Then we have

E[υ|θ = i]≤
B −U0

K2
+U01{U0<0}

(

1

K2
−

1

K1

)

+
K3 + log e

K1
.

The proof of Lemma 4 is provided in the supplemental article [44], Sec-
tion 6.

In particular, from (C1)–(C3) and Lemma 4, we have

ρiE[τi|θ = i]

≤ ρi

(

logL− [log(ρi/(1− ρi))− log(ρ̃/(1− ρ̃))]+

Dηi
(M)

+
[log((1− ρi)/ρi) + log(ρ̃/(1− ρ̃))]+ + ξM + log e

I2(M)

)

≤ ρi
logL

Dηi
(M)

+ ρi
log(1/ρi) + log(ρ̃/(1− ρ̃)) + ξM + log e

I2(M)
.

This inequality together with (46) and the fact that
∑M

i=1 ρi log
1
ρi

=H(ρ)
implies the assertion of the theorem:

V ∗(ρ)≤ Vπ̃2(ρ)
(49)

≤
H(ρ) + log(ρ̃/(1− ρ̃)) + ξM + log e

I2(M)
+

M
∑

i=1

ρi
logL

Dηi
(M)

+ 1.

Remark 7. For large values of H(ρ) and ρ̃ and when Iη0
(M)> Iη,ρ̃(M),

the upper bound (49) can be tightened as follows (see Section 7 in [44] for
the proof):

Vπ̃2(ρ)≤
H(ρ) + log(ρ̃/(1− ρ̃)) + ξM

Iη0
(M)

+

M
∑

i=1

ρi
logL

Dηi
(M)

(50)

+
(1− ρ̃) logM + (2− ρ̃)ξM +4+ log e

Iη,ρ̃(M)
+ 1.
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[45] Nakiboğlu, B. and Gallager, R. G. (2008). Error exponents for variable-length
block codes with feedback and cost constraints. IEEE Trans. Inform. Theory 54

945–963. MR2445044
[46] Nakiboǧlu, B. and Zheng, L. (2012). Errors-and-erasures decoding for block codes

with feedback. IEEE Trans. Inform. Theory 58 24–49. MR2907699
[47] Nitinawarat, S., Atia, G. and Veeravalli, V. V. (2013). Controlled sensing for

multihypothesis testing. IEEE Trans. Automat. Control 58 2451–2464.
[48] Nowak, R. D. (2011). The geometry of generalized binary search. IEEE Trans.

Inform. Theory 57 7893–7906. MR2895367
[49] Polyanskiy, Y., Poor, H. V. and Verdú, S. (2011). Feedback in the non-
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